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Abstract 

The Global Positioning System relies on a system of synchronized atomic clocks orbiting the 

earth that emit signals which upon reception at any point on earth, are used to compute the 

position coordinates of the point. These are subject to frequency shifts because of their altitude 

and gravitation and require that relativistic effects be taken into account for their accurate 

functioning. This article looks at the relativistic basis of the primary corrections that are to be 

made when using GPS, and also shows some numerical calculations to give an idea of the errors 

that may accumulate if the relevant corrections are not made. 

 

Introduction 

The GPS has a segmented configuration, 

consisting of Space, Control and User 

segments respectively. It is in the Space 

segment that 24 satellites carrying atomic 

clocks are orbiting the earth with a period of 

12 hours. The configuration is such that 

there are four satellites in each of six orbital 

planes inclined at 55∘ with respect to earth’s 

equatorial plane, distributed so that from any 

point on the earth, four or more satellites are 

almost always above the local horizon [1]. 

The Control segment consists of multiple 

monitoring stations on earth that track the 

satellites, receive and transmit navigational 

updates, synchronize the clocks to within 

nanoseconds of each other and predict 

ephemerides of each satellite [2]. The User 

segment is essentially the users who are able 

to receive signals from the orbiting clocks 

and compute their positions, local time etc. 

 

The role of relativity is evident in the very 

process that is used to determine the user 

position. We consider four synchronized 

clocks at positions rj  that emit pulses at 

times tj, where j = {1, 2,3,4}. The 

transmission of these pulses can be thought 

of events in space-time that correspond to a 

phase reversal of the circularly polarized 

electromagnetic signals [1]. These signals 

are then received on earth by a user who 

needs to know her position and time 

coordinates given by r and t respectively. At 

the user end, the time lapse between the 

emission and detection of the signal is used 

to compute how far each satellite is from the 

user. This is done by solving the following 

equation, 

 

 𝑐2 
(𝑡 − 𝑡𝑗)

2
 = |r − r𝑗 |

2
, j = 1, 2, 3, 4        (1) 

 

where c is the speed of light. This is 

followed by the method of trilateration to 

determine the user’s position r. Essentially 

after the distances of three satellites from the  

user are known, three spheres are 

constructed centered on each satellite 

respectively. The intersecting point of these 

three spheres gives the position of the user. 

The fourth atomic clock is used to make up 

for the inaccuracies of the user’s clock. We 

can see the importance of eliminating timing 

errors, by calculating the effect on distance 

calculation as a result of an error in the 

reported time lapse. 

 

cΔt = Δr                                                  (2) 

 



From (2) it can be seen that a Δt of 1ns 

corresponds to a Δr of 0.3m. This shows that 

even small differences in the frequencies of 

clocks on earth and in satellites can add up 

to significant errors. We will quantify this 

further in the next sections. 

 

Gravitational frequency shift 

Gravitational blue shift experienced by the 

signals emitted by the satellite clocks is a 

major effect that needs to be accounted for 

in GPS. The main reason for this effect is 

the reduced curvature of space-time 

experienced by the satellite clocks due to 

their increased distance from earth. The 

calculations below show how this 

corresponds to the satellite clocks running 

faster than identical clocks on earth, and 

consequently accumulating a time error that 

needs to be adjusted. 

 

We will use the Schwarzschild metric 

approximation to analyze the clocks in 

GPS[3]. The Schwarzschild metric and the 

corresponding differential proper time are 

given by, 

 

𝑑𝑠2 =  1 −  
2𝑀

𝑟
 𝑑𝑡2 −  

𝑑𝑟2

 1− 
2𝑀

𝑟
 
− 𝑟2𝑑𝜑2 (3)  

𝑑𝜏2 =  1 −  
2𝑀

𝑟
 𝑑𝑡2 −  

𝑑𝑟2

 1− 
2𝑀

𝑟
 
− 𝑟2𝑑𝜑2(4) 

 

The value of c is taken as 1 in the above 

expressions. Assuming that the clocks are 

constant distance from earth, we can take dr 

to be 0. We divide equation (4) by (dt)
2
 

where dt is the incremental coordinate time 

of a clock at infinity. Now, we can write two 

different equations, one for dτsat - the 

satellite proper time and dτe – the proper 

time for the clock on earth. 

 

 
𝑑𝜏𝑠𝑎𝑡

𝑑𝑡
 

2

=   1 −  
2𝑀

𝑟𝑠𝑎𝑡
 −  𝑟𝑠𝑎𝑡

2  
𝑑𝜑

𝑑𝑡
 

2

   (5) 

 

 

 
𝑑𝜏𝑒

𝑑𝑡
 

2
=   1 −  

2𝑀

𝑟𝑒
 −  𝑟𝑒

2  
𝑑𝜑

𝑑𝑡
 

2
 (6) 

 

 

Writing rdφ/dt as v, the tangential velocity 

of the clock along the circular path, and 

dividing the above two equations, we get: 

 

 
𝑑𝜏𝑠𝑎𝑡

𝑑𝜏𝑒
 

2
=

1−
2𝑀

𝑟𝑠𝑎𝑡
− 𝑣𝑠𝑎𝑡

2

1−
2𝑀

𝑟𝑒
− 𝑣𝑒

2
                   (7) 

 

Equation (7), gives the ratio of the proper 

times of the clocks at two different locations 

from the centre of the earth. We can 

calculate the effect due to gravitational blue-

shift alone by taking v to be 0 for both the 

clocks and apply the following 

approximation when taking the square root 

of equation (7): 

 

(1+d)
n
 = 1+ nd, if |d|<<1 and |nd|<<1    (8) 

 

We obtain the following expression for the 

stationary clocks, 

 
𝑑𝜏𝑠𝑎𝑡

𝑑𝜏𝑒
≈ 1 −

𝑀

𝑟𝑠𝑎𝑡
+

𝑀

𝑟𝑒
−

𝑀2

𝑟𝑠𝑎𝑡  𝑟𝑒
          (9) 

 

The cross term can be neglected for its 

relatively small magnitude and we are left 

with, 

 
𝑑𝜏𝑠𝑎𝑡

𝑑𝜏𝑒
≈ 1 −

𝑀

𝑟𝑠𝑎𝑡
+

𝑀

𝑟𝑒
                           (10) 

 

The above expression is an estimate of the 

fractional difference in rates between the 

stationary clocks at two different positions 

above the earth. The above ratio is of the 

order of 10
-10

. To be precise, for every one 

second on earth the satellite clock is ahead 

by 5.2 X 10
-10

s. This means that in one day 

i.e. 86400s, this asynchrony will amount to 

45 microseconds. We can use equation (2) to 

see that this would lead to an accumulated 



error in position by 13.5km in one day. 

Hence, the atomic clocks in satellites need to 

be adjusted in advance to make up for their 

faster rates. However, this is not the only 

correction to be made. We now move on to 

other effects and see how they should be 

accounted for. 

 

Time dilation 

Time dilation i.e. slowing down of clocks 

under motion is one of the foremost 

consequences of special relativity. In GPS 

too, the atomic clocks on the satellites are 

moving with respect to an observer on earth. 

This means that we should take into account 

the velocities in equation (7) for calculating 

the fractional time difference. The velocities 

of the satellite in orbit as well as the clock 

on earth – vsat and ve  respectively – are 

computed using Newtonian mechanics. 

Knowing that the period of the satellite is 12 

hours and assuming a circular orbit, the 

velocity of the satellite is given by, 

 

𝑣𝑠𝑎𝑡 =
2𝜋𝑟𝑠𝑎𝑡

𝑇
                                     (11) 

 

Similarly, the velocity of a clock on the 

equator can be calculated by noticing that 

the it completes one cycle of rotation around 

the earth’s axis in one day or 86,400s. 

 

𝑣𝑒 =
2𝜋𝑟𝑒

86,400
                                   (12) 

 

Substituting equations (11) and (12) in (7) 

and repeating the analysis as in the case of 

stationary clocks, we obtain the following 

expression, 

 

𝑑𝜏𝑠𝑎𝑡

𝑑𝜏𝑒
≈ 1 −

𝑀

𝑟𝑠𝑎𝑡
+

𝑀

𝑟𝑒
−

𝑣𝑠𝑎𝑡
2

2
+

𝑣𝑒  
2

2
    (13) 

 

Again, substitution of values gives an offset 

of 39 microseconds for one day, i.e. the 

satellite clock is slower by 39 microseconds 

in one day. We notice that time dilation and 

gravitational blue shift are two opposing 

effects, the former making the satellite 

clocks tick faster whereas the later slows 

them down. Before a clock is launched into 

orbit, the net effect is taken into account and 

the frequency of the clocks is slowed down 

[4].  

 

The Sagnac Effect 

Equation (1) implies an inertial reference 

frame in which the user determines her 

position coordinates. However, the rotation 

of earth about its axis has an additional 

effect that needs to be considered when 

attempting to synchronize clocks in a 

rotating frame of reference. We analyze this 

by considering a transformation from an 

inertial frame with Minkowskian space-time 

to a rotating frame of reference. Neglecting 

gravitational potentials, the metric in 

cylindrical coordinates in an inertial frame is 

written as, 

 

− 𝑑𝑠2
 = −(𝑐 𝑑𝑡)2

 + 𝑑𝑟2
 + 𝑟2𝑑𝜑2

 + 𝑑𝑧2
     (14) 

 

We now transform this to another frame 

rotating at ωe, with coordinates {t’,r’,φ’,z’} 

given by  

  

𝑡 = 𝑡′, 𝑟 = 𝑟′, 𝜑 = 𝜑′ + 𝜔E𝑡′, 𝑧 = 𝑧′.         (15) 

 

The transformed metric is written as, 

 

−𝑑𝑠2 = − 1 −
𝜔𝐸

2𝑟 ′ 2

𝑐2   𝑐𝑑𝑡′  2 +

2𝜔𝐸𝑟
′2𝑑𝜑′𝑑𝑡 ′ +  𝑑𝜎 ′ 2                        (16) 

 

where, (𝑑𝜎′)
2
 = (𝑑𝑟′)

2
+(𝑟′𝑑𝜑′)

2
+(𝑑𝑧′)

2   
 (17) 

 

Light travels along a null worldline, so we 

set ds
2
 equal to zero, and solve for cdt’ 

keeping terms of only up to first order, 

 

𝑐𝑑𝑡 ′ =  𝑑𝜎 ′ + 
𝜔𝐸𝑟

′2𝑑𝜑 ′

𝑐
                   (18) 

The quantity 𝑟′2𝑑𝜑′/2 is just the 

infinitesimal area 𝑑𝐴′𝑧 in the rotating 



coordinate system swept out by a vector 

from the rotation axis to the light pulse, and 

projected onto a plane parallel to the 

equatorial plane[1]. Thus, the total time 

required for light to traverse some path is 

 

 𝑑𝑡 ′ =   
𝑑𝜎 ′

𝑐
+

2𝜔𝐸

𝑐2  𝑑𝐴′𝑧         (19) 

 

A fixed observer on earth, not taking into 

account the rotation would only consider the 

first term in the synchronization of her clock 

network. On the other hand, the contribution 

due to the second term is significant as 

shown below and therefore must be 

accounted for when performing clock 

synchronizations. 

 

For earth, 2𝜔E/𝑐2
 = 1.6227 × 10

−21
 s m

−2
 and 

the equatorial radius is 𝑎 = 6,378,137 m, so 

the area is 𝜋𝑎2
= 1.27802×1014 m

2
. Thus, the 

last term in equation (19) gives, 

 
2𝜔𝐸

𝑐2  𝑑𝐴′𝑧 = 207.4 𝑛𝑠               (20) 

 

From an underlying inertial reference frame, 

this can be considered as the additional time 

required by light to reach the moving 

reference point [1]. 

 

Conclusion 

It has been shown that without proper 

adjustments in clock frequencies to make up 

for the relativistic effects, GPS will 

experience serious inaccuracies. Relativity 

manifests itself in the form of constancy of 

speed of light, gravitational frequency shifts, 

time dilation and rotational effects. The 

purpose of this project was to provide an 

overview of the major considerations that 

are taken into account when designing GPS. 

There are other secondary effects such as 

signal propagation delay, spatial curvature 

on the geoid, gravitation from other solar 

system bodies and perturbation in satellite 

orbits that could also be taken into account 

in a more advanced analysis to obtain more 

refined results. 
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